Wednesday, November 11, 2015

TheInternetOfThings

The Internet of Things (IoT)  is the network of physical objects or "things" embedded with electronics, software, sensors, and network connectivity, which enables these objects to collect and exchange data. The Internet of Things allows objects to be sensed and controlled remotely across existing network infrastructure, creating opportunities for more direct integration between the physical world and computer-based systems, and resulting in improved efficiency, accuracy and economic benefit. Each thing is uniquely identifiable through its embedded computing system but is able to interpenetrate within the existing Internet infrastructure.

Lets understand this further A thing, in the Internet of Things, can be a person with a heart monitor implant, a farm animal with a bio chip transponder, an automobile that has built-in sensors to alert the driver when tire pressure is low -- or any other natural or man-made object that can be assigned an IP address and provided with the ability to transfer data over a network. So far, the Internet of Things has been most closely associated with machine-to-machine (M2M) communication in manufacturing and power, oil and gas utilities. Products built with M2M communication capabilities are often referred to as being smart. (See: smart label, smart meter, smart grid sensor)

Business Angle - Today computers -- and, therefore, the Internet -- are almost wholly dependent on human beings for information. Nearly all of the roughly 50 petabytes (a petabyte is 1,024 terabytes) of data available on the Internet were first captured and created by human beings by typing, pressing a record button, taking a digital picture or scanning a bar code.

The problem is, people have limited time, attention and accuracy -- all of which means they are not very good at capturing data about things in the real world. If we had computers that knew everything there was to know about things -- using data they gathered without any help from us -- we would be able to track and count everything and greatly reduce waste, loss and cost. We would know when things needed replacing, repairing or recalling and whether they were fresh or past their best.

Although the concept wasn't named until 1999, the Internet of Things has been in development for decades. The first Internet appliance, for example, was a Coke machine at Carnegie Melon University in the early 1980s. The programmers could connect to the machine over the Internet, check the status of the machine and determine whether or not there would be a cold drink awaiting them, should they decide to make the trip down to the machine.

Integration with the Internet implies that devices will use an IP address as a unique identifier. However, due to the limited address space of IPv4 (which allows for 4.3 billion unique addresses), objects in the IoT will have to use IPv6 to accommodate the extremely large address space required. Objects in the IoT will not only be devices with sensory capabilities, but also provide actuation capabilities (e.g., bulbs or locks controlled over the Internet). To a large extent, the future of the Internet of Things will not be possible without the support of IPv6 and consequently the global adoption of IPv6 in the coming years will be critical for the successful development of the IoT in the future.

The ability to network embedded devices with limited CPU, memory and power resources means that IoT finds applications in nearly every field. Such systems could be in charge of collecting information in settings ranging from natural ecosystems to buildings and factories, thereby finding applications in fields of environmental sensing and urban planning.

On the other hand, IoT systems could also be responsible for performing actions, not just sensing things. Intelligent shopping systems, for example, could monitor specific users' purchasing habits in a store by tracking their specific mobile phones. These users could then be provided with special offers on their favorite products, or even location of items that they need, which their fridge has automatically conveyed to the phone. Additional examples of sensing and actuating are reflected in applications that deal with heat, electricity and energy management, as well as cruise-assisting transportation systems. Another excellent application that the Internet of Things brings to the picture is home security solutions. Home automation is also a major step forward when it comes to applying IoT. All these advances add to the numerous lists of IoT applications. Now with IoT, you can control the electrical devices installed in your house while you are sorting out your files in office. Your water will be warm as soon as you get up in the morning for the shower. All credit goes to smart devices which make up the smart home. Everything connected with the help of Internet.

However, the application of the IoT is not only restricted to these areas. Other specialized use cases of the IoT may also exist. An overview of some of the most prominent application areas is provided here. Based on the application domain, IoT products can be classified broadly into five different categories: smart wearable, smart home, smart city, smart environment, and smart enterprise. The IoT products and solutions in each of these markets have different characteristics.

In order to hone the manner in which the Internet of Things (IoT), the Media and Big Data are interconnected, it is first necessary to provide some context into the mechanism used for media process.  Media approach Big Data as many actionable points of information about millions of individuals. The industry appears to be moving away from the traditional approach of using specific media environments such as newspapers, magazines, or television shows and instead tap into consumers with technologies that reach targeted people at optimal times in optimal locations. The ultimate aim is of course to serve, or convey, a message or content that is (statistically speaking) in line with the consumer's mindset. For example, publishing environments are increasingly tailoring messages (advertisements) and content (articles) to appeal to consumers that have been exclusively gleaned through various data-mining activities.

The media industries process Big Data in a dual, interconnected manner:
Marketing of consumers (for advertising by marketers) Data-capture : Thus, the internet of things creates an opportunity to measure, collect and analyze an ever-increasing variety of behavioral statistics. Cross-correlation of this data could revolutionize the targeted marketing of products and services.[55] For example,  the combination of analytics for conversion tracking with behavioral targeting has unlocked a new level of precision that enables display advertising to be focused on the devices of people with relevant interests.[56] Big Data and the IoT work in conjunction. From a media perspective, Data is the key derivatives of device inter connectivity, whilst being pivotal in allowing clearer accuracy in targeting. The Internet of Things therefore transforms the media industry, companies and even governments, opening up a new era of economic growth and competitiveness. The wealth of data generated by this industry (i.e. Big Data) will allow Practitioners in Advertising and Media to gain an elaborate layer on the present targeting mechanisms used by the industry.
Environmental monitoring: Applications of the IoT typically use sensors to assist in environmental protection by monitoring air or water quality, atmospheric or soil conditions and can even include areas like monitoring the movements of wildlife and their habitats. Development of resource constrained devices connected to the Internet also means that other applications like earthquake or tsunami early-warning systems can also be used by emergency services to provide more effective aid. IoT devices in this application typically span a large geographic area and can also be mobile.
Infrastructure management : Monitoring and controlling operations of urban and rural infrastructures like bridges, railway tracks, on- and offshore- wind-farms is a key application of the IoT. The IoT infrastructure can be used for monitoring any events or changes in structural conditions that can compromise safety and increase risk. It can also be used for scheduling repair and maintenance activities in an efficient manner, by coordinating tasks between different service providers and users of these facilities. IoT devices can also be used to control critical infrastructure like bridges to provide access to ships. Usage of IoT devices for monitoring and operating infrastructure is likely to improve incident management and emergency response coordination, and quality of service, up-times and reduce costs of operation in all infrastructure related areas.[62] Even areas such as waste management stand to benefit from automation and optimization that could be brought in by the IoT.
Manufacturing : Network control and management of manufacturing equipment, asset and situation management, or manufacturing process control bring the IoT within the realm on industrial applications and smart manufacturing as well.[64] The IoT intelligent systems enable rapid manufacturing of new products, dynamic response to product demands, and real-time optimization of manufacturing production and supply chain networks, by networking machinery, sensors and control systems together.
Digital control systems to automate process controls, operator tools and service information systems to optimize plant safety and security are within the purview of the IoT.[61] But it also extends itself to asset management via predictive maintenance, statistical evaluation, and measurements to maximize reliability.[65] Smart industrial management systems can also be integrated with the Smart Grid, thereby enabling real-time energy optimization. Measurements, automated controls, plant optimization, health and safety management, and other functions are provided by a large number of networked sensors.
Energy Management : Integration of sensing and actuation systems, connected to the Internet, is likely to optimize energy consumption as a whole. It is expected that IoT devices will be integrated into all forms of energy consuming devices (switches, power outlets, bulbs, televisions, etc.) and be able to communicate with the utility supply company in order to effectively balance power generation and energy usage. Such devices would also offer the opportunity for users to remotely control their devices, or centrally manage them via a cloud based interface, and enable advanced functions like scheduling (e.g., remotely powering on or off heating systems, controlling ovens, changing lighting conditions etc.).In fact, a few systems that allow remote control of electric outlets are already available in the market.
And various such data intensive systems.
Your feedback can help improve our product and service. Feel free to give us suggestions. Please contact us through one of the following methods.
LinkedIn profile http://www.linkedin.com/in/ravindrarpande

No comments:

Post a Comment